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Probability distributions associated with the third and fourth neighborhoods of the structure invariant
Pim=0n+ Ox + 01+ @ are described. These distributions yield estimates for the invariants ¢, (not
merely the cosine invariants cos ¢,,) which are consistent with a specified enantiomorph. The estimates
are particularly good in the favorable case that the standard deviations of the distributions are small.

1. Background
The probabilistic theory of the structure invariant

Pim=0Pn+ QO+ 01+ Oy (1.1)

was initiated two years ago (Hauptman, 1974a,b), and
a year later (Hauptman, 19754,b) a new method was
introduced which marked a departure from earlier
approaches not only for the theory of the quartet in-
variants (1.1) but for that of the structure invariants
and seminvariants in general. The initial results
strongly suggested that the value of ¢,, was mostly
determined by one or several appropriately chosen
small sets of structure factor magnitudes |E|, the
neighborhoods of ¢,,. Two estimates for ¢, were
derived, the first dependent on the four magnitudes |E|
constituting the first neighborhood of ¢,, and the se-
cond dependent on the seven magnitudes in the se-
cond neighborhood. Finally a ‘principle of nested
neighborhoods’ was formulated which asserted the
existence of a sequence of nested neighborhoods,
having increasing numbers of magnitudes, in terms of
which more and more reliable estimates for ¢, could
be expressed.

More recently, Giacovazzo (1976) using a different
mathematical formalism, obtained distributions in P1
associated with the seven-magnitude second neigh-
borhood. Although superficial comparison shows
qualitative agreement with the earlier results of
Hauptman (1975b), a closer study may well reveal
significant discrepancies [compare Hauptman &
Green (1976) with Giacovazzo (1975) in PT].

In the preceding paper (Hauptman, 1977) a se-
quence of nested neighborhoods was derived. In the
present paper probability distributions appropriate to
these higher-order neighborhoods are given, and these
lead in the obvious way to estimates for ¢,,, in terms
of known magnitudes |E|.

Of major importance is the existence of joint con-
ditional distributions of two or more structure in-
variants given magnitudes |E| alone, as well as of con-
ditional distributions of a single structure invariant,
given not only magnitudes |E| but also the values of
one or more structure invariants, These distributions

permit the estimation of the values, i.e. both magni-
tudes and signs, of a large number of structure in-
variants ¢,,, consistent with a specified enantiomorph,
and not merely the estimation of the magnitudes of
¢ In this way, enantiomorph specification is made
prior to the process leading from the values of the struc-
ture invariants to the values of individual phases
rather than being made part of this process. In effect
then, the values of both cos ¢,,, and sin ¢,,, are available
for phase determination rather than only the values of
cOSs @y, thus making the process of phase determina-
tion a better-conditioned one.

In recent work the theory was extended to cover
the case of unequal atoms, in particular neutron dif-
fraction also, since negative atomic scattering factors
are permitted (Hauptman, 1976). The present paper
is written from this more general point of view.

Because of their extreme length, no mathematical
derivations are given here. Instead, the patterns of the
earlier results are extrapolated in the obvious way and
lead to estimates of the ¢, which are confirmed by
making application to known and unknown struc-
tures.

Next, the formulas obtained are correct to terms of
order 1/N only, where N is the number of atoms in
the unit cell. It is not yet known whether the im-
provement which would result if terms of order 1/N2
were retained justifies the enormous amount of work
required to derive these more accurate distributions.

It is assumed throughout that a structure consisting
of N atoms per unit cell in the space group Pl is
fixed. The normalized structure factor E, is defined by

, 1 X ,
Eh= |Eh| €xXp (l(ph)= 0_—;/—2 .Zl f, exXp (27'Clh . l'j) (1.2)
j=

where f; is the zero-angle atomic scattering factor of
the atom labeled j, r; is its position vector and

N
o=y f1.
f=)

For the case of X-ray diffraction, the f; are the atomic
numbers Z; and are therefore all positive. In the neu-
tron diffraction case some of the f; may be negative.

Finally, the sixfold Cartesian product W x W x W

(1.3)
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x W x W x W of reciprocal space W is defined to be
the collection of all ordered sextuples (h, k, 1, m, p, q)
of reciprocal vectors h, k, 1, m, p, q; the eightfold
Cartesianproduct W x Wx Wx Wx W x W xW x W
to be the collection of all ordered octuples (h, k1, m,
P, q, 1, s) of reciprocal vectors h, k, I, m, p, q, r, s, etc.

The third (13-magnitude) neighborhood yields three
major results. (1) The joint conditional probability
distribution of two quartets, given 13 magnitudes,
P, |13, equation (2.13). (2) The conditional probability
distribution of a quartet, given the value of another
quartet and 11 magnitudes, P, ;;, equation (2.33).
(3) The conditional probability distribution of a
quartet, given 13 magnitudes, P, 3, equation (2.42).

The fourth (21-magnitude) neighborhood yields five
major results. (1) The joint conditional probability dis-
tribution of three quartets, given 21 magnitudes, P, 5,
equation (3.22). (2) The joint conditional probability
distribution of two quartets, given the value of another
quartet and 19 magnitudes, P, |, 1o, equation (3.48). (3)
The conditional probability distribution of a quartet,
given the values of two other quartets and 15 magni-
tudes, Py, 5, equation (3.61). (4) The joint conditional
probability distribution of two quartets, given 21
magnitudes, P,|,;, equation (3.72). (5) The conditional
probability distribution of a quartet given 21 magni-
tudes, P, ,;, equation (3.73).

2. Probability distributions derived from the third
(13-magnitude) neighborhoods

2.1. Joint probability distribution of the 13 structure
faCtors Ehs Eka EI: Ema Ep, Eq, Eh+kv Ek+l, El+h; Eh+py
Ek+p) El—p’ Em—p

Refer to the preceding paper (Hauptman, 1977) for
the definition of the third (13-magnitude) neighbor-
hoods of the structure invariant

Oin=Pn+ P+ Q1+ Opm - (2.1)

Suppose that the ordered sextuple (h, k, 1, m, p, q)
of reciprocal vectors is a random variable (vector)
which is uniformly distributed over the subset of the
sixfold Cartesian product WxW x W x W x W x W
defined by

h+k+14+m=0 (2.2)
and

h+k+p+q=0. 2.3)

Then the thirteen normalized structure factors E,, Ey,
E, E,, Ep’ Eq‘; Ey ik, Ek+la.El‘+.h; Eh+p7 Ek+p, 'El—p,
E._p, as functions of the primitive random variables
h, k, 1, m, p, q, are themselves random variables.
Denote by
P13=P(R1,R2,R3,R4,R5,R6;
Ry2,R;33,R31; Rys5,R;5,R33,Ry3;
D, Dy, D3, D, D5, D; P12,P23,P31;

(pl 5s (DZS’ (153—53 (154—5—) (2'4)
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the joint probability distribution of the magnitudes
IEh!7 IEkI, IElla lEmla ,EPIJ Iqu; IEh+k|s IEk+l|a |E1+h|;
'Eh+p|, |Ek+pI, IEl—pI, IEm—p, and the phases ¢ha (pka

D1, Pm, ¢ps (pq; Ph+ks Pr+15 Pr+ns qoh+p9 q)k+p? (pl—p7
@m-p Of these 13 structure factors. Then, following the

pattern of results recently established (Hauptman,
1975a, 1976), it seems clear that

1
Pi3= ;1—3 R1R2R3R4R5R6R12R23R31R15R25R3§R4§

xexp{—R%~R§—R§-R§—R§—R§—Rf2

—R3;—R},—R}s—R3s—R3s—Ris

+ % [RiR,Ry; cos (P + P, — P ,)
+R3R4Ry; cos (P3+ D, + D)
+RsR6R;; cos (@5 + Ps+ D ,)
+R;R3R;;3 cos (P + P53 —D55)
+RR4R;y;3cos (D, + D,y +D,5)
+ R R3R;3; cos (P + D3 —P3,)
+ R2R4R34 cos (P, + P4+ P3y)
+R;RsR 5cos (@ +Ds—D,s)
+R,R¢R ;5 cos (P, + P+ Dy 5)
+R3RsR;5 cos (P4 s — D)
+R1RgR;y5 cos (D, + P+ D,5)
+R3R5R335 08 (93— Ps5— P33)
+R4ReR 33508 (Py— P+ P33)
+R4R5R 5 08 (Py — @5 — Dy3)
+ R3R6R435 cos (93— P+ Du35)]
_ 2(343

— 0,0
—0_3—2—4) [R1R2R3R4 COS(¢1 +¢2+‘p3 +(P4)

+R1R2R5R6 COS ((pl +(p2+(b5+d)6)
+R3R4R5R6 COS (d)3+ d)4— d)S — (p6)]

ol )feo(w)}

where O(1/N'/2) consists of all terms of order 1/N'/?
or higher in which each term of order 1/N/2 contains
three R’s and three @’s having double index and each
term of order 1/N containstwo R’s and two @’s having
double index; but O(1/N) consists of all terms of order
1/N or higher in which the terms of order 1/N are
independent of the @’s. It follows [refer to Hauptman
(1975b, 1976) for details for the second neighborhood]
that O(1/N'/2) and O(1/N) will make no contribution
of order 1/N or lower to the conditional distributions
derived in the sequel.

(2.5)

2.2. The joint conditional probability distribution of the
pair of structure invariants @u,=@p+ Qx+ O+ Om,
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Ppg=Pn+ Px+ Qp+ g, given the 13 magnitudes |Ey|,
IE, IE), |Enl, IEpls Iqu |En+xb |Ex+ily |Erenl; [En+pls
|Ek+p|’ IEI plal m—p

Suppose that the 13 non-negative numbers R, R,,
R3, R4, Rs, Rg; Ry3, Ra3, Rag; Rys, Ras, Ras, Rys are
specified. Assume that the ordered sextuple (h, k, 1,
m, p, q) of reciprocal vectors is a random variable
(vector) which is uniformly distributed over the subset
of the sixfold Cartesian product Wx Wx Wx W
x W x W defined by

|Enl =Ry, |Ex]=R;, |[E|=Rs, |[Em|=Ra4,
|Egl=Rs, |[Eg|=R¢; (2.6)
|En+kl=Ry2, |Ex+1l=Ra3, |[Ey+nl=R3y; |Eh+p|=R15_’
|Ex+pl=R3s, |E1-p|=R33, |[Em—pl=Ra3; (2.7
h+k+14+m=0, (2.8)
and
h+k+p+q=0. (2.9)

In order that the domain of the primitive random
variable (h, k, I, m, p, q) be non-vacuous, it is necessary
to interpret the equation |Ey|=R; of (2.6), for example,
as the inequalities Ry <|Ey|<R; +dR; etc. In view of
(2.8) and (2.9),

Om=PntPx+ Q1+ Pm (2.10)

and

Qpg=0nt Pu+ O+ g (2.11)

are structure invariants which, as functions of the
primitive random variables h, k, 1, m, p, q, are them-
selves random variables. Denote by

Pz[ 13 =P(‘p34,¢56|R1,R2,R3,R4,R5,R6;

Ri2,R23,R31; Ri5,R55,R335,Ry3)  (2.12)

the joint conditional probability distribution of the
pair of structure invariants @u., @pg given the 13
magnitudes (2.6) and (2.7). Then P,;,3; is obtained
from P,; [equation (2.5)] by fixing the 13 R’s, inte-
grating P, with respect to the seven phase variables
(DIZ’ (p23, (1731; (pls, (p25, (p3§, (1743 from 0 to 27[, and
multiplying the result by a suitable normalizing par-
ameter. [ Refer to Hauptman (1975b, 1976), in particular
Appendix III. (D.5) and III. (D.6) of the latter, for
complete details for the second neighborhood.] One
finally obtains, correct up to and including terms of
order 1/N,

1
Paj1a k‘eXP {—2B1234 cOs P34

—2Bj356 €08 P56 —2B3456 COS (¢34—¢56)}

< I 2<T3R12X'12 I 203R;3X 53
0 O.%/Z 0 0.3/2
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X
to (2B (28 )

I 203R;,5X 55 I 203R33X 33
X 1o a3 0 a3

x I (%—fgi—X“> (2.13)
where ,
3065—0,0
BIZ34= —30_%—2iR1R2R3R4 . (214)
303—0,04 ,
Biase= 0—%R1R2R5R6 , (2.15)
302—0,04
B34se= TR3R4R5R6 , (2.16)

2

o, is defined by (1.3),
X12=[R?R3+R3R2+R2IR}
+2R R,R3R, cos @3,+2R;R;R5R cos P
+2R;3R4RsR¢ cos (P34 —Ps6)] V2, (2.17)
X,3=[R3R3+R2RZ+2RR,R;R, cos 3,]'%, (2.18)
X3:=[R3R?4+R%R%+2R R,R3R, cos ®34]"%, (2.19)
X15=[RiR5+R3R:+2R R,RsR¢ cos Ps6]'/2, (2.20
X,5=[R3R%+R3R%+2R R,R R cos D542, (2.21
X5 =[RIRE+ RIR?

)
)

+2R3R,R5Rg c0s (P3s—Pse)]'>, (2.22)
X5=[RiR3+R3RE
+2R3R4R5R6 Cos ((b34_(p56)]1/2a (2.23)

and K is a suitable normalizing parameter indepen-
dent of @5, and @54 and not relevant for the present
purpose. Clearly the 13 magnitudes (2.6) and (2.7) are
parameters of the distribution.

In general, (2.13) has two maxima in the domain

(2.24)
(2.25)

related to each other by reflection through the origin,
because (2.13) is unchanged when &3, and @5 are
replaced by their negatives. One maximum yields the
most probable values of the pair of invariants Pims
@5 [(2.10) and (2.11) respectively], given the 13 magni-
tudes (2.6) and (2.7) for one enantiomorph, the other
maximum the most probable values for the other
enantiomorph. By choosing one or the other maxi-
mum, one selects the enantiomorph. In the case that
the maximum occurs at @3,=®s4=0 or m, or at
D3,=0, 5=, or at @3, =1, P56=0, the most prob-
able values of the pair (¢, ¢,,) are the same for both
enantiomorphs and (2.13) is not suitable for enanti-
omorph discrimination. It should be emphasized that
when (2.13) is suitable for enantiomorph discrimina-
tion then, in general, the values (both signs and magni-

—7[<(p34s7[,

—n<Psg<m,
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tudes) of two structure invariants consistent with the
chosen enantiomorph are available, in contrast to the
usual case when the value of only one structure in-
variant is used for enantiomorph selection.

2.3. The conditional probability distribution of the struc-
ture invariant Qu,= @+ Qx+Qx+ @1+ @, given the
value of the structure invariant @,,= @+ @+ @1+ P
and the 11 magnitudes |Ey|, |E\|, |E\l, |Enl, |Epl, |Eql;
|En+ils [Ex+1ls [Evenls [Er—pl, |Em—pl

Suppose that @54 (—n<Ps4<7n) and the 11 non-
negative numbers, Ry, R,, R3, R4, Rs, Rg; Ry2, Rys,
R31; Rs3, Rys, are specified and that the ordered
sextuple (h, k, 1, m, p, q) of reciprocal vectors is the
primitive random variable (vector) which is assumed
to be uniformly distributed over the subset of W x W
x W x W x W x W defined by

®pg=Ps6; (2.26)
|En|=R;, [Ex|=R2, |E\|=Rs3,
|Em|=Ra, |[Eg|=Rs, |[Eg]=Re; (2.27)
|En+kl=R12, |[Ex+1|=R23, [Eren|=R31;
|E\-p|=R33, |[Em-p|=Ras; (2.28)
h+k+1+m=0, (2.29)
h+k+p+q=0. (2.30)
In view of (2.29) and (2.30),
Pim=Pn+ P+ P14+ O (2.31)
and
Ppg=Pnt P+ Py + g (2.32)

are structure invariants. The structure invariant ¢,,,
as a function of the primitive random variables
h, k, I, m, is itself a random variable, and its conditional
probability distribution, given the value of the struc-
ture invariant (2.26) and the 11 magnitudes (2.27) and
(2.28), obtained from P, ;3 [equation (2.13)] by fixing
@56 and multiplying by a suitable normalizing con-
stant, is given by
Py 11,11 =P(®34|Ps6; Ry, Ry, R3, Ry, Rs, Ry

Ri3, Ra3, R31; Rss, Ry3)
1
>~ z‘exp {—2B1234 [f8 ) @34

—2B3456 €08 (P34 — Dse)}

203R X 203R,3X
x Ig (263533/12)(31) I, (203R§/§2X3§)
2 02

x I <203R4§X4§) )

a3?

(2.33)

where Bi34, Biase, X12, X323, X3y, X33, X435 are

AC 33A-3
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given by (2.14), (2.16), (2.17), (2.18), (2.19), (2.22), (2.23)
respectively, L is a suitable normalizing parameter
independent of @34, and @54, Ry, Ry, R3, Ry, Rs, R;
R12, R33, R31; R3s, Rys are parameters of the distribu-
tion.

It should be noted that in general, i.e. if @56 #0 or 7,
(2.33) is not an even function of @;, and has a unique
maximum in the whole interval

—n<Py<n (2.34)

of length 27. In other words, once the enantiomorph
has been fixed by proper choice of the value for @,
then the most probable value (i.e. both sign and magni-
tude) for &;,, given @s¢ and the 11 magnitudes (2.27)
and (2.28), is given by the position of the unique
maximum of (2.33). The initial estimate for @5, to
be used in (2.33), in terms of magnitudes |E| alone may
be found, for example, from the distribution described
in the following § 2.4.

If #56=0 or m then ¢,, has the same value for both
enantiomorphs, (2.33) is an even function of @5, and,
unless (2.33) has its maximum at ¢,3,=0 or =, (2.33)
is bimodal, one maximum corresponding to one
enantiomorph and the second to the other enantio-
morph. In this case enantiomorph selection may be
made by specifying arbitrarily the sign of &5, in the
interval (— 7, )

2.4. The conditional probability distribution of the struc-
ture invariant @;,=@n+ @+ @1+ Qn, given the 13
magnitudes |Eh’7 IEkl’ ]Ell, lEmL IEpl’ ,Eq|, |Eh+k|a |Ek+l|,
|Eysnls lEh+p|, |Ek+p|9 ‘El—pla IEm—pl

Suppose that the 13 non-negative numbers R;, R,,
R3, Ras Rs, Re; Ry3, Rz, R3y; Rys, Rys, Ras, Rys are
specified and that the ordered sextuple (h, k, 1, m, p, q)
is the primitive random variable (vector) which is
assumed to be uniformly distributed over the subset
of the sixfold Cartesian product Wx W x W x W
x W x W defined by

IEh’ =R1, |Ek| =R2, |E1| = Rs’

|[Em|=Ra, |Eg|=Rs, |Eq|=R¢; (2.35)
|En+kl=Ri2, |Ex+1|=R;3, |Ey+nl=R31;  (2.36)

|Eh+pl=R15a IEk+pI=R25’
’El~pl=R3§a ,Em—p]=R4§; (2'37)
h+k+1+m=0, (2.38)
h+k+p+q=0. (2.39)

In view of (2.38),

Pim=Pn+ Ox+O1+ O (2.40)

is a structure invariant which is a function of the
primitive random variables h, k, I, m. Hence ¢, is
itself a random variable and its conditional probability
distribution
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P1113=P(¢34|R1, R;, R3, R4, Rs, Re;
Ri3, Ra3, R31; Ris, Rys, Ras, Rys),  (2.41)

given the 13 magnitudes (2.35)-(2.37), is obtained from
P13 [equation (2.13)] by integrating with respect to
@56 from 0 to 27:

2n
P1|13= J P2[13d(p56~
0

Although this integration can be carried out exactly,
the resulting expression is a complicated infinite
multiple series which does not appear to be suitable
for numerical calculation. For this reason it is sug-
gested that the indicated integration (2.42) be carried
out numerically in any given case using perhaps four
or eight equal subdivisions of the interval (0,2m).

(2.42)

3. Probability distributions derived from the fourth
(21-magnitude) neighborhoods

Now that the pattern of probability distributions cor-
responding to the first three neighborhoods has been
established, it is a straightforward matter to write
down the analogous distributions associated with the
fourth neighborhoods. These are briefly but explicitly
described here in strict analogy with those of § 2.

3.1. Joint probability distribution of the 21 structure
factors Eh, Ek7 Ela Em? Ew Eqa En Es; Eh+k’ Ek+l7 El+h;
Eh+p1 Ek+p, El—pa Em—p; Eh+r, Ek+r, El-—ra Em—rs E
q—r
Refer to the preceding paper (Hauptman, 1977) for
the definition of the fourth (21-magnitude) neighbor-
hoods of the structure invariant

Oim=Prht+ P+ P1+ O - (3.1)

Suppose that the ordered octuple (h, k,1, m, p, q, 1, s)
of reciprocal vectors is a random variable (vector)
which is uniformly distributed over the subset of the
eightfold Cartesian product W x W x W x W x W x W
x W x W defined by

p—r

h+k+1+m=0, (3.2)
h+k+p+q=0, (3.3)
and

h+k+r+s=0. (3.4)

Then the 21 normalized structure factors,
Ew, Ev, E\, En, E,, Eg, E,, E; (3.9
Ehtw Ex+1 Evens (3.6)
Eh+p: Ey+p, El—p, Em—p; (3.7)
Epses Exer Ev-t, Em—r, Ep—rs Eq-r, (3.8)

as functions of the primitive random variables,
h, k, I, m, p, q, r, s, are themselves random variables.
Denote by

THE PROBABILISTIC THEORY OF ¢n+¢x+ ¢+ on IN P1

P, =P(Ry, Ry, R3, Ry, Rs, Re, R7, Rg;
Ri3 R;3, R31; Rys, Ras, Rss, Ras;
Ri7, R37, R37, R4, Rs7, Re;
D, D,, Py, @4, Ds, D, b, Pg;
D12, Pr3, Pay; Pis, Pas, Pas, Pas;

¢17, (DZ'I’ ¢3'73 ¢47’ ¢57’ (p67) (39)

the joint probability distribution of the magnitudes
|Enl, |Exl, ... and the phases @y, @,... of these 21 struc-
ture factors. Then, following the pattern of the pre-
vious § 2 and recent results (Hauptman 1975a, 1976),
one finds

1
})21 = FR1R2R3R4R5R6R7R8R12R23R31

X R15R35R33R45R 7R 27R37R47R s7R 67

xexp (—R}—R3—R3—R3—R2—R2—R3—-R}
—R};—R};—R3;—Ris—R3s—Ris—Ris
—R};—R3;—R37—Ri7—R%7—R%7)

20
X eXp {?/32 [RleRlz COS (@1 + qbz— d)12)

+R3R R, cos (P3+ Dy +Py5)
+R5R6R12 cos (@5 + P+ Dy2)
+R45RgR; cos (P74 Pg+ Dy5)
+R,R3R ;5 cos (P, + P53 —D,3)
+R{R4R;,5¢cos (D1 +Py+D33)
 4+R,R;3R;, cos (@, + D3 —P3;)
+R,R, R, cos (P, + P4+ D3y)
+R,R5R,5¢cos (P, +Ps—D,5)
+R3R6R ;5 c0s (D + P+ Py 5)
+R;3R5R;5 ¢os (D, + D5 — Pys)
+ R R¢R;5¢cos (P + P+ Dy5)
+ R3R5R 35 cos (@3 — D5 — Ps3)
4+ R4R6R335 cos (P4 — P+ P33)
+ R4R5R,5 €08 (P4 — s — Py3)
+R3RgR 35 cos (P53 — P+ Dy3)
+R,R4R;,cO8 (P, +P,—D;4)
+R,RgR 7 cos (P, + Pg+ Py 4)
+R,R7R, cos (P, + P, — D7)
+ R RgR;; cos (D1 + P+ D,4)
+ R3R;R37 €08 (P3— @7 — P37)
+R4RgR 37 cos (Py— Pg+ D37)
+R4R7R 47 cO8 (Pf— P7— Py7)
+R3RgR 7 cos (B3 — P+ D7)
+ RsR,R 55 cos (115_5 — P, —Ds7)
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+ RsRgR 57 cos (D — Pg + Ps7)
+R6sR7Rg7 cOS (96— P7— D7)
+RsR3R¢7 €08 (D5 — Pg+ D7) ]
_ 230%—0,04)

e

X[R;R,R3R, cos (P + P+ D3+ D)
+R,R;R5Rg cos (P, + D+ D5+ D)
+R,R,R,Rg cos (P + P, + D5+ Dy)
+R3R,R5Rg cos (D3 + Dy — D5 — D)
+R3R,R7Rg cos (P3+ Dy — D7 —Dg)
+RsRgR,Rg cos (D5 + P — P7— Ps)]

wofw )+ ()

where O(1/N'/?) consists of all terms of order 1/N'/?
or higher in which each term of order 1/N'/? contains
three R’s and three &’s having double index and each
term of order 1/N contains two R’s and two @’s having
double index; but O(1/N) consists of all terms of order
1/N or higher in which the terms of order 1/N are
independent of the @’s. It follows [refer to Hauptman
(1975b, 1976), in particular Appendix III of the latter
reference, for details for the second neighborhood]
that O(1/N'?) and O(1/N) make no contribution of
order 1/N or lower to the conditional probability
distributions described in the sequel.

(3.10)

3.2. The joint conditional probability distribution of the
three structure invariants @, =@+ @k + @+ P, Ppg=
Pnt+Oxt+ @yt gy Prs=¢n+ P+ @+ @5, given the 21
magnltudes IEhl |Ek| |El| ]Eml |Ep| |Eq| ]Erl |Es|
]Eh+k| |Ek+l| |El+h| IEh+p| |Ek+p| | 1- p|$ |
|Eh +r|, |Ek+rl7 |El—r|, {Em—rly IEp~r|, IEq—r

Suppose that the 21 non-negative numbers R;, R,,
R3, Ry, Rs, Rg, Rq, Rg; Ry, Ras, Ray; Rys, Rys, Rss,
R43s; Riq, Ry7, R37, Ry3, Rsw, Rg7 are specified. As-
sume that the ordered octuple (h, k, 1, m, p, q, r, s) of
reciprocal vectors is a random variable (vector) which
is uniformly distributed over the subset of the eightfold
Cartesianproduct W x Wx Wx Wx WxWxWx W
defined by

Ew—pls

|[En| =Ry, |[Ex|=R2, |[E\|=R3, |Em|=Ra4,
|Ep|=Rs, |[Eq|=Rs, |[E|=R, |Es|=Rg; (3.11)
|En+kl=R12, |[Ex+1|=R23, [Ej+n|=R3y;  (3.12)

IEh+p|=R159 IEk+p|=R259

|Ei-pl=R33, |Em-pl=Rsz; (3.13)

|Eb+:l=R17, |Ex+e =Rz7, |[Er-i|=R37,
|Em-il=R47, |[Ep—|=Rs7, |[Eq—;|=R¢7; (3.14)
h+k+1+m=0, (3.15)
h+k+p+q=0, (3.16)

AC 33A-3*

561

h+k+r+s=0. (3.17)
In view of (3.15)~3.17),
Pim=Pn+ Px+ Q1+ Pm (3.18)
Ppg =Pnt Pt Ppt g, (3.19)
and
Prs=Pn+ Qx+ P+ @s (3.20)

are structure invariants which, as functions of the
primitive random variables h, k, I, m, p, q, r, s, are
themselves random variables. Denote by

P32y
=P(¢34a ¢56, ¢78 I Rb R27 R37 R4a RS, R67 R7a RB;
Ri2, R;3, R31; Rys, Rys, Ras, Rys;

R175 R279 R37, R475 R577 R67) (321)
the joint conditional probability distribution of the
three structure invariants @, @, @rs given the 21
magnitudes (3.11}+3.14). Then Pj,,, is obtained from
P,, [equation (3.10)] by fixing the 21 R’s, integrating
P,, with respect to the 13 phase variables @,,, ®,3,
D3, Pis, Pys, P33, Dus; Pr1, Pars Pa7y Pumy Ps7, Po7
from 0 to 27, and multiplying the result by a suitable
normalizing parameter. [Refer to Hauptman (1975b,
1976), in particular Appendix III (D.5) and III (D.6)
of the latter, for complete details for the second
neighborhood.] One finally obtains, correct up to and
including terms of order 1/N,

1
P3|y~ K P {—2B)334 c0s ®3,—2B ;56 COS P55

—2B) 375 €08 P75 —2B3456 COS (P34 — Ps6)

—2B3478 €08 (P34 — D7)

—2Bs675 c0s (P56 — D)}
(203R12X12 <203R23X23

372 3/2

(203R31X31) I (203R15X15)
372 0 372

3/2

(20’3R25X25 203R35X3§>

203R4‘5X45 203R 71X 4

(
(R

(5

(

3/2

20 3R37X 3’7)

3/2 3/2

203R 57X 5’7)
203Re7X 67

3/2

(3.22)

(203R27X27>

372

(203R4’7X47) I
0
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where

2 —
305-0204 036204 R,R.R,R, ,

2

B (3.23)

uvpe =

o0, is defined by (1.3),

X[, =[R2R3+ RIR3+ RZR2 + RIR?
+2R1R3R3R, cos P34+ 2R RyR5Rg cos Psg
+2R1R2R7Rg Cos ¢78
+2R3R4R5R4 cos (P34 — Psg)
+2R5R6R7R8 Cos (@56—@78)]1/2, (3.24)

X23=[RIR5+RiR}+2R,R,R3R, cos ®3,]"%, (3.25)

X3:=[R3R?+R3R%+2R,R,R3R, cos D3,]"2%, (3.26)

X15s=[RIR}+R3R%Z+2R,R,R R cos Ds¢]"2, (3.27)

X25=[R3R}+ R}R%+2R,R,R R cos Ps4]"2, (3.28)

X35=[R3R3+RIRE+2R3R,RsR6c0s(®34 — Ds6)] "2,

(3.29)

X45=[RiR%+R3R2+2R;R4R5R¢cOS(P34 — Ds6)]2,

(3.30)

X17 = [R%R% + R%Ré +2R1R2R7Rgcos 4)78]1/2’ (331)

X,7=[R3R2+R?R%+2R,R,R;R5c0s D55]"%, (3.32)

X37=[R3R3+ RiR§+2R3R4R;RgCOS(P 34— D,5)]'%,

(3.33)

X47=[R3R7+ R3R3+2R3R4R7RgcO8(P 34— D5)] /2,

(3.349)

X s7=[R3R3+RER3+2RsRsR;Rgcos (56— D5)] /2,
‘ (3.35)
Xe67=[RER%+R3R3+2RsRsR7Rgc08 (P56 — @5)] 1z,
(3.36)

and K is a suitable normalizing parameter independent
of @34, @56 and P, and not needed for the present
purpose. Clearly the 21 magnitudes (3.11)+3.14) are
parameters of the distribution. Remarks like those in
the last paragraph of § 2.2 are appropriate here too.

3.3. The joint conditional probability distribution of the
pair of structure invariants @u,= @+ Ox+ @1+ Pm,
Qpg=Pn+ P+ Qp+ @, given the value of the structure
invariant @,;= @y ~+ @y + O+ @5 and the 19 magnitudes
IEhl? |Ek|’ IEII, |Em|a |Ep|’ Iqus |Er|, |Es'a |Eh+k|9 IEk+l|,
IEl+h|; ]Eh+p|7 |Ek+p|a |El—p|’ IEm—pI; ]El—rla [Em—r|a
IEp—rI’ lEq—r

Suppose that @5 (—n<P,3<7) and the 19 non-
negative numbers, R;, R,, R3, R4, Rs, Rg, R4, Rg;
Ri3, Ra3, Ry Rys, Rys, Ras, Rus; R, Ry7, Rs7, Rer,
are specified and that the ordered octuple (h, k, I, m,
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p, q, 1, s) of reciprocal vectors is the primitive random
variable which is assumed to be uniformly distributed
over the subset of the eightfold Cartesian product
WxWxWxWxWxWxW x W defined by

Qrs=DPg; (3.37)
|[En|=R}, |Ex|=Ry, |E\|=R3, |Em|=Rq,
|Eg|=Rs, |Eq|=Re, |E|=R-, |E|=Rg; (3.38)
|En+1l=Ry2, |[Ex+1|=R23, |[Ey+nl=R31; (3.39)
lEh+p|=R15’ IEk+p|=R259
|Ei-p|=R33, |Em-p|=Ry4s; (3.40)
|Ei-|=R37, |[Em-|=R47,
|Ep—«|=Rs7, |[Eq-d|=Re7 (3.41)
h+k+1+m=0, (3.42)
h+k+p+q=0, (3.43)
h+k+r+s=0. (3.44)
In view of (3.42)+3.44),
Pimn=On T P+ Q1+ P (3.45)
Ppe=Pnt Pt Pt g, (3.46)
and
Prs=Put+ Out O+ @5 (3.47)

are structure invariants. The structure invariants ¢,
and ¢,,, as functions of the primitive random variables
h, k, 1, m, p, q, are themselves random variables and
their joint conditional probability distribution, given
the value of the structure invariant (3.37) and the 19
magnitudes (3.38)3.41), obtained from P3|, [equa-
tion (3.22)] by fixing @55 and multiplying by a suitable
normalizing constant, is given by
P311,10=P(P34, Ps6|D7s;

Ry, Ry, R3, Ry, Rs, Rg, R4, Rg;

Ry2, R33, R31; Rys, Rys, Ry3, Rys;

R375 R4’7_7 R57’ R67)

1
o~ Eexp [—231234 Ccos ¢34_231256008®56

—2B3456 €OS (P34 — Pse)
—2B3475 c0s (P34, — P73)
—2Bsg75 €08 (P56 — P7s)]

<1 20'3R12X'1'2 I 203R,3X ;3
0 03/2 0 a3
o (225gar) 1, (2oefor)
2 02

« I (203R25X25> I (203R3§X3§)

0%/2 0-125/2
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% I 263R4'§X4§ I 203R37X37
0 Gg/z 0 02/2
2 (203?;/72)(47) I (203§35/72X57)
2 2

x I (—203§§ZX67)

where Bj;34. Byiases Byase» Biars, Bserss X1z X2,
X31’ XlSa X255 X3§’ X4§7 X373 X477 X57a X67 are
given by (3.23)3.30) and (3.33)-(3.36), L is a suitable
normalizing parameter independent of @3, and ®sg,
and @45, Ry, Ry, R, Ry, Rs, Rg, Ry, Rg, Ry3, Ry,
R31, Ryis, Rys, Rss, Rys, Rs7, Ry7, Rs7, Re7 are par-
ameters of the distribution.

(3.48)

3.4. The conditional probability distribution of the struc-
ture invariant @, = @+ @+ Q1+ O, given the values
of the structure invariants @ ,; = Pn+ Qi+ Pp+ P, Gy =
On+ Qx+ @+ @5 and the 15 magnitudes |Ey), |Ek| |E,
|Eml, 1Epl, [Eql, |Edl, |Esl; [En+ils [Ex+ils |Eveal;
|Em p|7 | 1- rIa IE rl

Suppose that @54 (— 1< P56 <7), P75 (—T<DP15<7)
and the 15 non-negative numbers, R,, R;, R3, R4, Rs,
Re, R4, Rg; Ry3, Rys, R3i; R3s, Rys, Ryv, Ryv, are
specified and that the ordered octuple (h, k, I, m, p,
q, 1, s) of reciprocal vectors is the primitive random
variable which is assumed to be uniformly distributed
over the subset of the eightfold Cartesian product
WxWxWxWxWxWxWxW defined by

Ppg=Ps6 » (3.49)
@rs=P1g; (3.50)
|Ew| =Ry, |Exl=Rs, |Ei|=Rs, |En|=Ru,

|[Epl=Rs, |Eq|=Re, |E|=R5, |[Ej|=Rg; (3.51)
|[En+x|=Ry2, |[Ex+1|=R23, |[Ey+n|=R31; (3.52)
|Er-p|=R35, |[Em-pl=Rus; (3.53)
|Er—o|=R37, |Em-i/=Ra7, (3.54)
h+k+1+m=0, (3.55)
h+k+p+q=0, (3.56)
h+k+r+s=0. (3.57)

In view of (3.55)+3.57),
Pim= P+ Pt P14 P 5 (3.58)
Ppg=Pnt Out+ POy + g, (3.59)

and

Prs=Pn+ Qx+Or + @5 (3.60)

are structure invariants. The structure invariint @,,,
as a function of the primitive random variables
h, k, I, m, is itself a random variable and its conditional
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probability distribution, given the values of the two
structure invariants (3 49) and (3.50) and the 15 magni-
tudes (3.51)+3.54), is obtained from Pj|,; [equation
(3.22)] by fixing @56 and @, and multiplying by a
suitable normalizing constant:

P1|2,15=P(4’34|d’56, D

Ry, Ry, R3, Ry, Rs, Rg, R4, Rg;
Ry2, R33, R3y; R33, Rus; R37, Ryr)

1
~ 57 eXp {—2B,334 COs D3,

—2B3456 €Os (P34 —Ds¢)
~2B3475 c0s (P34 — ‘1’78)}

<1 2(73R12X'112 I 203R,3X 53
0 O.%/z 0 0'%/2
203R3 X 203R35X 3%
Xlo( 365/12 31) Io( 3633/52 35)
w1 203R43X 43 I 203R37X 37
[¢] 0%/2 0 0'2/2
203R.=X
x I ("3_;/72£>
g3

where Bj;34, B3456, Biars, X2, X323, X34, X33, Xus,
X37, X475 are glven by (3.23)+3.26), (3.29), (3.30),
(3.33), (3.34), M is a suitable normalizing parameter
independent of @;,, and @s¢, P75, R;, R,, Rs, Ry,
Rs, Rs, R4, Rg; Ry, Ras, R3y; Rys, Rys, Ry7, Ry7 are
parameters of the distribution.

(3.61)

3.5. The joint conditional probability distribution of the
pair of structure invariants @,=@p+ O+ O+ Pms
pg=Ont+ Qx+ @y +@q, given the 21 magnitudes |E,|,
IEkl |El, |Eml, |Ep I IEqI IE L 1Esl; |En+xls [Ex+ils [Ersnl;
IEk+p| l pl
p—rp q-r
Suppose that the 21 non-negative numbers R, R,,
R3, R4, Rs, Rg, Ry, Rg; Ry3, Ry3, R3y; Rys, Rys, Rss,
Ru43; Ry4, Ry, R37, Ry7, Rs7, Rg7 are specified and
that the ordered octuple (h, k, I, m, p, q, r, s) is the
primitive random variable (vector) which is assumed
to be uniformly distributed over the subset of the
eightfold Cartesian product W x Wx W x W x W x W
x W x W defined by

I h+p| m pa h+r’ I k+rla | 1- r|9

|Em -,

|En|=Ry, |[Ex]|=R;, |Ej|=R3, |[Enl=Ry4,
|Epl=Rs, |[Eq|=Re, |E|=R5, |[Ej|=Rg; (3.62)
|Eh+xl=Ry2, |[Ex+1|=R23, [Er+n|=R31;  (3.63)
IEh+pI=R157 |Ek+p’=R25’
|Ei—pl=R33, |[Em-pl=Ry35; (3.64)

|Eh+r] =R17’ IEk+r| =R27, IEl—rI=R37’
'Em—rI:R47, IEp—r]=R57, IEq—r|=R67; (365)
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h+k+1+m=0, (3.66)
h+k+p+q=0, (3.67)
h+k+r+s=0. (3.68)
In view of (3.66) and (3.67),
Pt =Pn+ P+ 1+ Pm (3.69)
and
Ppg=Pn+ P+ PptPq (3.70)

are structure invariants which are functions of the
primitive random variables h, k, 1, m, p, q. Hence ¢,
and ¢,, are themselves random variables and their
joint conditional probability distribution

Py a4 =P(P34, Ps6|Ry, R2, R3, Ry, Rs, Re, R, Rg;
Ry2, Ry3, R315 Rys, Rys, Rys, Rys;

R177 R277 R3—77 R477 R57’ R67) » (3'71)
given the 21 magnitudes (3.62)+3.65), is obtained from
P35, [equation (3.22)] by integrating with respect to
&4 from O to 2m:

2n
P2|21= J Ps]zld‘p?s .
0
Although this integration can be carried out exactly,
the resulting expression appears not to be useful in
the applications. For this reason it is suggested that
this integration be done numerically using perhaps
four or eight equal subdivisions of the interval (0,2r)
in analogy with (2.42).

(3.72)

3.6. The conditional probability distribution of the
structure invariant Q= @+ Oy + @1+ @m, given the 21
magnitudes IEhL |Ek|7 |El|s |Em|9 IEPI, IEqL |Er|’ |Es|7
IEh+k|, |Ek+ll7 |El+h|; |Eh+p|’ IEk+p|a |El—p|, lEm—pI;
|Eh+r|’ lEk+r|s IEl—rl, |Em-—r|, IEp—rla |Eq—r

Under the same assumptions as in § 3.5, the structure
invariant ¢, is a random variable whose conditional

THE PROBABILISTIC THEORY OF ¢+ @+ ¢+ @m IN P1

probability distribution, Py,;, given the 21 magni-
tudes (3.62)+3.65), is obtained from P3|, by means of

2n 2n
P1|21=J j P3)51dPs6d D75 .

0 0
Again, the indicated double integral is best evaluated
numerically subdividing the square 0<®54<2m,
0<®,3<2r into perhaps 16 or 64 sub-squares, for
example.

(3.73)

4. Concluding remarks

Probability distributions of the structure invariant
@im= On+ @ + ©1 + @, corresponding to the third and
fourth neighborhoods have been described. Now that
the pattern of these distributions has been established,
it is a straightforward matter to derive the distribu-
tions associated with the fifth (31-magnitude) and
higher neighborhoods. In accordance with the prin-
ciple of nested neighborhoods, it is anticipated that
the distributions belonging to the higher neighbor-
hoods will yield better estimates for the invariants and
will therefore permit the determination of very com-
plex crystal structures. Initial applications in P1 con-
firm this prediction (Gilmore, 1976).
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